Research Publications


Cucumber – Breeding, Genetics, Genomics, Pathology Publications

  • Lin Y-C, Mansfeld BN, Tang X, Colle M, Chen F, Weng Y, Fei Z and Grumet R. 2023. Identification of QTL associated with resistance to Phytophthora fruit rot in cucumber (Cucumis sativus L.). Front. Plant Sci. 14:1281755. DOI: 10.3389/fpls.2023.1281755

  • Chen FC, Yong JP, Zhang GY, Liu MY, Wang QQ, Zhong HL, Pan YP, Chen P, Weng Y, Li YH 2023. An LTR retrotransposon insertion inside CsERECTA for an LRR receptor‑like serine/threonine‑protein kinase results in compact (cp) plant architecture in cucumber. Theor Appl Genet 136:3110. DOI: 10.1007/s00122-023-04273-6

  • Liu H, Zhao J, Chen F, Wu Z, Tan J, Nguyen NH, Cheng Z, Weng Y. 2023. Improving Agrobacterium tumefaciens−Mediated Genetic Transformation for Gene Function Studies and Mutagenesis in Cucumber (Cucumis sativus L.). Genes.  14(3):601. DOI: 10.3390/genes14030601

  • Grumet R, Lin Y-C, Rett-Cadman S, Malik A. 2022. Morphological and genetic diversity of cucumber (Cucumis sativus L.) fruit development. Plants. 12:23. DOI: 10.3390/plants12010023
  • Pan YP, Chen BR, Qiao LJ, Chen FF, Zhao JY, Cheng ZH, Weng Y 2022. Phenotypic characterization and fine mapping of a major-effect fruit shape QTL FS5.2 in cucumber, Cucumis sativus L., with near isogenic line-derived segregating populations. Int J Mol Sci 23: 13384. DOI: 10.3390/ijms232113384
  • Li, H., Wang, S., Chai, S., Yang, Z., Zhang, Q., Xin, H., Xu, Y., Lin, S,. Chen, X., Yao, Z., Yang, Q., Fei, Z., Huang, S., Zhang, Z. 2022. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications 13, 682 DOI: 10.1038/s41467-022-28362-0
  • Liu, H.Q., Weng, Y. 2022. Chapter 5. Agrobacterium Tumefaciens-Mediated Genetic Transformation in Cucumber. In: Pandey S, Weng, Y., Behera, T.K., Bo, K.L. (eds) The Cucumber Genome. Springer Nature Switzerland AG. pp 55-69. DOI: 10.1007/978-3-030-88647-9_5
  • Tan, J.Y., Wang, Y.H., Dymerski, R.D., Wu, Z.M., Weng, Y. 2022. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). Theor Appl Genet 135, 4197–4215. DOI: 10.1007/s00122-022-04212-x
  • Weng, Y. 2022. Chapter 3. The Cucumber Genome—An Update. In: Pandey, S, Weng, Y., Behera, T.K., Bo, K.L. (eds) The Cucumber Genome. Springer Nature Switzerland AG. pp 25-35 DOI: 10.1007/978-3-030-88647-9_3
  • Zhang, H.J., Wang, Y.H., Tan, J.Y., Weng, Y. 2022. Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber, Cucumis sativus. Theor Appl Genet DOI: 10.1007/s00122-022-04100-4

  • Kwak, H.-R., H.-S., Byun, H.-S. Choi, J.-W. Han, C.-S. Kim, W.M. Wintermantel, J.E. Kim, and M. Kim. 2021. First report of cucurbit chlorotic yellows virus infecting cucumber in South Korea. Plant Dis. DOI: PDIS-10-20-2254-PDN

  • Li Z., Y.H. Han, H.H. Niu, Y.H. Wang, B. Jiang, and Y. Weng. 2020. Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent femaleness (F) locus. Horticulture Research 7: 32. DOI: 10.1038/s41438-020-0251-2
  • Mansfeld B.N., M. Colle, C. Zhang, Y.C. Lin, R. Grumet. 2020. Developmentally regulated activation of defense allows for rapid inhibition of infection in age-related resistance to Phytophthora capsici in cucumber fruit. BMC Genomics 21:628. DOI: 10.1186/s12864-020-07040-9
  • Pan, Y.P., C. Wen, Y.H. Han, Y.H. Wang, Y.H. Li, S. Li, X.M. Cheng, and Y. Weng. 2020. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. Theor Appl Genet. DOI:  10.1007/s00122-020-03596-y

  • Rett-Cadman, S., M. Colle, B. Mansfeld., C.S. Barry, Y.H. Wang, Y. Weng, L. Gao, Z. Fei, and R. Grumet. 2019. QTL and transcriptomic analyses implicate cuticle transcription factor SHINE as a source of natural variation for epidermal traits in cucumber fruit. Front Plant Sci. DOI: 10.3389/fpls.2019.01536
  • Sheng, Y.S., Y.P. Pan, Y.H. Li, L.M. Yang, and Y. Weng. 2019. Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus L.). Plant Breeding, DOI: 10.1111/pbr.12754
  • Wang, Y.H., K.L. Bo, X.F. Gu, J.S. Pan, Y.H. Li, J.F. Chen, C.L. Wen, Z.H. Ren, H.Z. Ren, X.H. Chen, R. Grumet, and Y. Weng. 2019. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research 7: 3. DOI: 10.1038/s41438-019-0226-3
  • Wang, Y., J. Tan, Z. Wu, K. VandenLangenberg, T.C. Wehner, C. Wen, X. Zheng, K. Owens, A. Thornton, H.H. Bang, E. Hoeft, P.A.G. Kraan, J. Suelmann, J. Pan, and Y. Weng. 2019. STAYGREEN STAY HEALTHY a loss of susceptibility mutation in the STAYGREEN gene provides durable broad spectrum disease resistances for over 50 years of US cucumber production. New Phytologist 221:415-430. DOI: 10.1111/nph.15353
  • Weng, Y., 2019. Molecular breeding research in USDA-ARS cucumber improvement program – past, present and future. Journal Tianjin Agricultural Research 25(6) 6-18. USDA Publication #363596.
  • Zhao, J.Y., L. Jiang, G. Che, Y.P. Pan, Y.Q. Li, Y. Hou, W.S. Zhao, Y.T. Zhong, L. Ding, S.S. Yan,C.Z. Sun, R.Y. Liu, L.Y.Yan, T.Wu, X.X. Li, Y. Weng, and X.L. Zhao. 2019. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. Plant Cell. DOI: 10.1105/tpc.18.00905: CORRECTION Published June 2020. DOI: 10.1105/tpc.20.00150

  • Crane, M., T.C. Wehner, and R.P. Naegele. 2018. Cucumber cultivars for container gardening and the value of field trials for predicting cucumber performance in containers. HortScience 53: 16-22. DOI: 10.21273/HORTSCI11955-17
  • Dia, M., T.C. Wehner, G.W. Elmstrom, A. Gabert, J.E. Motes, J.E. Staub, G.E. Tolla, and I.E. Widders. 2018. Genotype X enviroment interaction for yield of pickling cucumber in 24 U.S. environments. Open Agriculture 3: 1-6. DOI: 10.1515/opag-2018-0001
  • Pan, J.S., J.Y. Tan, Y.H. Wang, X.Y. Zheng, K. Owens, D.W. Li, Y.H. Li, and Y. Weng. 2018. STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber. Theoretical and Applied Genetics 131: 1577–1587 DOI: 10.1007/s00122-018-3099-1
  • Wang, X., K. Bao, U.K. Reddy, Y. Bai, S.A. Hammar, C. Jiao, T.C. Wehner, A.O. Ramírez-Madera, Y. Weng, R. Grumet, and Z. Fei. 2018. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies and core collection development. Horticulture Research. 5:64. DOI: 10.1038/s41438-018-0080-8
  • Xu, W.W., J. Ji, Q. Xu, X.H. Qi, Y. Weng, X.H. Chen. 2018. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation.. Plant Journal 93(5):917-930 DOI: 10.1111/tpj.13819

  • Grumet, R., and M. Colle. 2017. Cucumber (Cucumis sativus) breeding line with young fruit resistance to infection by Phytophthora capsici. HortScience. 52:922-924. DOI: 10.21273/HORTSCI11423-16
  • Liu, P.N., H. Miao, H. W. Lu, J.Y. Cui, G.L. Tian, T.C. Wehner, X.F. Gu and S.P. Zhang. 2017. Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem. Genetics and Molecular Research 16: 1-9. DOI: 10.4238/gmr16039680
  • Mansfeld, B.N., M. Colle, Y. Kang, A.D. Jones, and R. Grumet. 2017. Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. Horticulture Research. 4:17022. DOI:  10.1038/hortres.2017.22
  • Pan, Y.P., S.P. Qu, K.L. Bo, M.L. Gao, K.R. Haider, and Y. Weng. 2017. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics 130:1531-1548. DOI: 10.1007/s00122-017-2908-2.
  • Wang, Y.H., K. VandenLangenberg, C.L. Wen, T.C. Wehner, Y. Weng. 2017. QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with 3 genotyping-by-sequencing in RIL population. Theor Appl Genet 131: 597–611. DOI: 10.1007/s00122-017-3022-1
  • Zhang, S., H. Miao, Z. Song, P. Liu, Y. Wang, T. C. Wehner, X. Gu, and S. Zhang. 2017. Molecular mapping and candidate gene analysis for fruit epidermal structure in cucumber. Plant Breeding. DOI: 10.1111/pbr.12510

  • VandenLangenberg, K. and T.C. Wehner. 2016. Downy mildew disease progress in resistant and susceptible cucumbers tested in the field at different growth stages. HortScience 51: 984-988. DOI: 10.21273/HORTSCI.51.8.984
  • Wang, Y.H., K. VandenLangenberg, T.C. Wehner, P.A.G. Kraan, J. Suelmann, X. Zheng, K. Owens, and Y. Weng. 2016. QTL mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628). Theoretical and Applied Genetics 129: 1493-1505. DOI: 10.1007/s0012

  • Ando, K., K.M. Carr , M. Colle, B.N. Mansfeld, and R. Grumet. 2015. Exocarp properties and transcriptomic analysis of cucumber (Cucumis sativus) fruit expressing resistance to Phytophthora capsici. PLOS One 10: e0142133, DOI: 10.1371/journal.pone.0142133

Melon – Breeding, Genetics, Genomics, Pathology Publications

  • Mo C, Wang H, Wei M, Zeng Q, Zhang X, Fei Z, Zhang Y, Kong Q (2024) Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. Plant Journal https://doi.org/10.1111/tpj.16705.

  • Mondal, S., L. Jenkins Hladky, and W.M. Wintermantel. 2023. Differential seasonal prevalence of yellowing viruses infecting melon crops in southern California and Arizona determined by multiplex RT-PCR and RT-qPCR. Plant Dis. DOI:  10.1094/PDIS-06-22-1512-RE
  • Toporek SM, Branham SE, Keinath AP, Wechter WP. 2023. QTL Mapping of Resistance to Pseudoperonospora cubensis Clade 2, Mating Type A1, in Cucumis melo and Dual-Clade Marker Development. Theoretical and Applied Genetics. DOI: 10.1007/s00122-023-04333-x
  • Vaughn JN, Branham SE, Abernathy BL, Hulse-Kemp AM, Rivers A, Levi A, Wechter WP. 2022. Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon. Nature Communications 13(1): 7897. DOI: 10.1038/s41467-022-35621-7

  • Acharya B, Mackasmiel L, Taheri A, Ondzighi-Assoume CA, Weng Y, Dumenyo CK 2021. Identification of bacterial wilt (Erwinia tracheiphila) resistances in USDA melon collection. Plants 10(9), 1972. DOI: 10.3390/plants10091972
  • Branham, S.E., Kousik, C.S., Mandal, M.K., Wechter, W.P. 2021. QTL mapping of resistance to powdery mildew race 1 in a recombinant inbred line population of melon. Plant Disease 105:3809-3815. DOI:  10.1094/PDIS-12-20-2643-RE
  • Mondal S, Jenkins Hladky LL, Fashing PL, McCreight JD, Turini TA, Wintermantel WM. First report of cucurbit yellow stunting disorder virus and cucurbit chlorotic yellows virus in melon in the Central Valley of California. Plant Dis. 2021 May 19. DOI: 10.1094/PDIS-01-21-0184-PDN.
  • Stajich, JE, Vu, AL, Judelson, H, Vogel, GM, Gore, MA, Carlson, MO, Devitt, N, Jacobi, J, Mudge, J, Lamour, K, and Smart, CD 2021. High quality reference genome for the oomycete vegetable pathogen Phytophthora capsici strain LT1534. Microbiology Resource Announcements Volume 10 Issue 21. DOI: 10.1128/MRA.00295-21
  • Tamang, P., K. Ando, W.M. Wintermantel, and J.D. McCreight. 2021. QTL mapping of Cucurbit yellow stunting disorder virus resistance in melon accession PI 313970. HortScience 56:424–430. DOI: 10.21273/HORTSCI15495-20.
  • Toporek, S. M., Branham, S. E., Katawczik, M. M., Keinath, A. P., and Wechter, W. P. 2021. QTL mapping of resistance to Pseudoperonospora cubensis clade 1, mating type A2, in Cucumis melo. Theoret. Appl. Genet. 134:2577–2586. DOI: 10.1007/s00122-021-03843-w
  • Wang X, Ando K, Wu S, Reddy UK, Tamang P, Bao K, Hammar SA, Grumet R, McCreight JD, Fei Z 2021. Genetic characterization of melon accessions in the U.S. National Plant Germplasm System and construction of a melon core collection. Molecular Horticulture 1:11. DOI: 10.1186/s43897-021-00014-9

  • Branham, S.E., J. Daley, A. Levi, R. Hassell, W.P. Wechter. 2020. QTL mapping and marker development for tolerance to sulfur phytotoxicity in melon (Cucumis melo). Frontiers in Plant Science. 11:1097. DOI: 10.3389/fpls.2020.01097
  • Tamang, P., W.M. Wintermantel, and J.D. McCreight. 2019. Suppression of Cucurbit chlorotic yellows virus accumulation in melon breeding line MR-1 under natural infection in Imperial Valley, California. Cucurbit Genetics Cooperative Report: CGC 42:26–30.

  • Wintermantel, W.M., L.L.J. Hladky, P. Fashing, K. Ando, and J.D. McCreight. 2019. First report of Cucurbit chlorotic yellows virus infecting melon in the New World. Plant Disease. 103:778. DOI: 10.1094/PDIS-08-18-1390-PDN
  • Zhao, G., Q. Lian, Z. Zhang, Q. Fu, Y. He, S. Ma, V. Ruggieri, A.J. Monforte, P. Wang, I. Julca, H. Wang, J. Liu, Y. Xu, R. Wang, J. Ji, Z. Xu, W. Kong, Y. Zhong, J. Shang, L. Pereira, J. Argyris, J. Zhang, C. Mayobre, M. Pujol, E. Oren, D. Ou, J. Wang, D. Sun, S. Zhao, Y. Zhu, N. Li, N. Katzir, A. Gur, C. Dogimont, H. Schaefer, W. Fan, A. Bendahmane, Z. Fei, M. Pitrat, T. Gabaldón, T. Lin, J. Garcia-Mas, Y. Xu, S. Huang. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics 51, pages 1607–1615. DOI: 10.1038/s41588-019-0522-8

  • Branham, S.E., A. Levi, M. Katawczik, Z. Fei, W.P. Wechter. 2018. Construction of a genome-anchored, high-density genetic map for melon (Cucumis melo L.) and identification of Fusarium oxysporum f. sp. melonis race 1 resistance QTL. Theor Appl Genetics 131:829-837. DOI: 10.1007/s00122-017-3039-5
  • Galpaz, N., I. Gonda, D. Shem-Tov, O. Barad, G. Tzuri, S. Lev, Z. Fei, Y. Xu, N. Lombardi, L. Mao, C. Jiao, R. Harel-Beja, A. Doron-Faigenboim, O. Tzfadia, E. Bar, A. Meir, U. Saar, A. Fait, E. Halperin, M. Kenigswald, E. Fallik, G. Kol, G. Ronen, J. Burger, A. Gur, Y. Tadmor, V. Portnoy, A. Schaffer, E. Lewinsohn, J. Giovannoni, and N. Katzir. 2018. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J. DOI: 10.1111/tpj.13838

  • Daley, J., S. Branham, A. Levi, R. Hassell, and P. Wechter. 2017. Mapping resistance to Alternaria cucumerina in Cucumis melo. Phytopathology 107:427-432. DOI: 10.1094/PHYTO-06-16-0246-R.
  • McCreight, J.D., W.M. Wintermantel, and E.T. Natwick. 2017. Host plant resistance in melon to sweetpotato whitefly in California and Arizona. Acta Hort. 1151:237–244. DOI: 10.17660/ActaHortic.2017.1151.37.
  • McCreight, J.D., W.M. Wintermantel, E.T. Natwick, J.W. Sinclair, K.M. Crosby, and M.L. Gómez-Guillamón. 2017. Recessive resistance to Cucurbit yellow stunting disorder virus in melon TGR 1551. Acta Hort. 1151:101–107. DOI: 10.17660/ActaHortic.2017.1151.17
  • Rabelo, H.d.O., L.d.S. Santos, G.M.M. Diniz, M.V. Marin, L.T. Braz, and J.D. McCreight. 2017. Cucurbits powdery mildew race identity and reaction of melon genotypes. Pesq. Agropec. Trop., Goiânia 47:440–447. DOI: 10.1590/1983-40632017v4749537
  • Wintermantel, W.M., R.L. Gilbertson, E.T. Natwick, and J.D. McCreight. 2017. Emergence and epidemiology of Cucurbit yellow stunting disorder virus in the American Desert Southwest, and development of host plant resistance in melon. Virus Res. 241:213-219. DOI: 10.1016/j.virusres.2017.06.004

  • Nimmakayala, P., Y. Tomason, V.L. Abburi, A. Alvarado, T. Saminathan, V.G. Vajja, G. Salazar, G. Panicker, A. Levi, W.P. Wechter, J.D. McCreight, A. Korol, Y. Ronin, J. Garcia-Mas, and U.K. Reddy. 2016. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science 22 September 2016. DOI: 10.3389/fpls.2016.01437.
  • Sabanadzovic, S., R. Valverde, J.D. McCreight, W.M. Wintermantel, and N. Aboughanem-Sabanadzovic. 2016. Cucumis melo endornavirus: Genome organization, host range and co-divergence with the host. Virus Research 214:49–58. DOI: 10.1016/j.virusres.2016.01.001.

Pumpkin and Squash – Breeding, Genetics, Genomics, Pathology Publications

  • Acharya, S., Shrestha, S., Sabharwal, P., Fu, Y. and Meru, G. 2023. Transcriptional changes during Phytophthora capsici infection reveal potential defense mechanisms in squash. Stresses. 3:827-841. 10.3390/stresses3040056
  • Flores-Iga, G., Lopez-Ortiz, C., Gracia-Rodriguez, C., Almeida, A., Nimmakayala, P., Reddy, U. K., & Balagurusamy, N. (2023). A Genome-Wide Identification and Comparative Analysis of the Heavy-Metal-Associated Gene Family in Cucurbitaceae Species and Their Role in Cucurbita pepo under Arsenic Stress. Genes, 14(10), 1877. DOI: 10.3390/genes14101877
  • Landrón, A., A.M. Linares, M. Feliciano, and Y. Miranda. 2023. Podosphaera xantii: An Update on the Powdery Mildew  of Tropical Pumpkin (Cucurbita moschata Duchesne)  in Puerto Rico. Journal of Agriculture University of Puerto Rico. 107, 57-61. DOI: 10.46429/jaupr.v107i1.21223
  • Perla, D.E., Hayden, Z.D., and Hausbeck, M. 2023. Commercial Hard Squash Cultivars Exhibit Differences in Susceptibility to Phytophthora Crown Rot. Plant Health Progress Vol. 24, No. 4. DOI: 10.1094/PHP-01-23-0009-RS.
  • Reddy, U. K., Lopez-Ortiz, C., Talavera-Caro, A. G., Natarajan, P., Tomason, Y., Alaparthi, S., Levi, A., Nimmakayala, P. 2023. GWAS resolves molecular mechanisms underlying natural variation for carotenoids in Cucurbita maxima Duchesne. Scientia Horticulturae 2023, 312, 111881.DOI: 10.1016/j.scienta.2023.111881
  • Thakur, S. and Meru, G. 2023. CRISPR/Cas9 mediated editing of phytoene desaturase gene in squash. Journal of Plant Biochemistry and Biotechnology.DOI: 10.1007/s13562-023-00866-w 
  • Hernandez CO, Labate J, Reitsma K, Fabrizio J, Bao K, Fei Z, Grumet R, Mazourek M. 2023.  Characterization of the USDA Cucurbita pepo, C. moschata, and C. maxima germplasm collections. Frontiers in Plant Science 14:1130814 DOI: 10.3389/fpls.2023.1130814

  • Fabrizio, J., LaPlant, K., Wyatt, L., Inzinna, G., Li, L. and Mazourek, M., 2022. Fine mapping and identification of candidate genes for the hull-less seed phenotype in Cucurbita pepo. Euphytica, 218:1-12. DOI:10.1007/s10681-022-03113-w

  • Luckew A., Meru G., Wang Y.Y., Mwatuwa R., Paret M., Carvalho R., Kalischuk M., Ribeiro da Silva, A.L.B., Candian J., Dutta B., Srinivasan R., Kavalappara S.R., RRD NCK, Bag S., McGregor C.  2022. Field Evaluation of Cucurbita Germplasm for Resistance to Whiteflies and Whitefly-transmitted Viruses. HortScience 57:337-344 DOI: 10.21273/HORTSCI16197-21
  • Reddy U.K., Natarajan P., Lakshmi Abburi V., Tomason Y., Levi A., Nimmakayala P. 2022. What makes a giant fruit? Assembling a genomic toolkit underlying various fruit traits of the mammoth group of Cucurbita maxima. Frontiers in Genetics. 13:1005158 DOI: 10.3389/fgene.2022.1005158
  • Shrestha, S., Meru, G., Fu, Y., Moon, P. 2022. Embryo rescue protocol for interspecific hybridization in squash. J. Vis. Exp. (187) DOI: 10.3791/64071

  • Alzohairy, S.A., Hammerschmidt, R., and Hausbeck, M.K. 2021. Antifungal Activity in Winter Squash Fruit Peel in Relation to Age Related Resistance to Phytophthora capsici.  Physiological and Molecular Plant Pathology 114:101603. DOI: 10.1016/j.pmpp.2021.101603
  • Kavalappara, S.R., Milner, H., Sparks, A., McGregor, C., Wintermantel, W.M. & S. Bag 2021. First report of cucurbit chlorotic yellows virus in association with other whitefly-transmitted viruses in squash (Cucurbita pepo) in Georgia. Plant Disease/ DOI: 10.1094/PDIS-11-20-2429-PDN
  • Kousik, C.S., Vogel, G., Ikerd, J.L., Mandal, M.K., Mazourek, M., Smart, C.D. and Turechek, W.W. 2021. New Sources of Resistance in Winter Squash (Cucurbita moschata) to Phytophthora Crown Rot and Their Relationship to Cultivated Squash. Plant Health Progress/ DOI: 10.1094/PHP-02-21-0047-FI
  • Mazourek M, Hernandez C, Fabrizio J. 2021. Reconsidering Approaches to Selection in Winter Squash Improvement: Improved Quality and Breeding Efficiency. In: Plant Breeding Reviews, Volume 44. (Ed: Goldman I). John Wiley & Sons, Inc. p. 247-272. DOI: 10.1002/9781119717003.ch7
  • Michael, V.N., Fu, Y., Shrestha, S., Meru, G. 2021. A Novel QTL for Resistance to Phytophthora Crown Rot in Squash. Plants 10:2115.DOI: 10.3390/plants10102115
  • Seda-Martínez, W., L. Wessel-Beaver, A. Linares-Ramírez and J.C.V. Rodrigues. 2021. Virus quantification, flowering, yield, and fruit quality in tropical pumpkin (Cucurbita moschata Duchesne) genotypes susceptible or resistant to two potyviruses. HortScience 56(2). DOI: 10.21273/HORTSCI15525-20
  • Vogel, GM, LaPlant, KE, Mazourek, M, Gore, MA and Smart, CD. 2021. A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theoretical and Applied Genetics 134:1015-103. DOI: 10.1007/s00122-020-03747-1



  • Krasnow, C.S., R. Hammerschmidt, and M.K. Hausbeck. 2017. Characteristics of resistance to Phytophthora root and crown rot in Cucurbita pepo L. Plant Disease 101:659-665. DOI: 10.1094/PDIS-06-16-0867-RE.

  • Holdsworth, W.L., K.E. LaPlant, D.C. Bell, M.M. Jahn, and M. Mazourek. 2016. Cultivar-Based Introgression Mapping Reveals Wild-Species Derived Pm-0 The Major Powdery Mildew Resistance Locus in Squash. PLOS ONE. e0167715. DOI:  10.1371/journal.pone.0167715
  • Krasnow, C.S., and M.K. Hausbeck. 2016. Evaluation of winter squash and pumpkin cultivars for age-related resistance to Phytophthora capsici fruit rot. HortScience 51:1251-1255. DOI: 10.21273/HORTSCI11173-16

  • Zhang, G., Y. Ren, H. Sun, S. Guo, F. Zhang, J. Zhang, H. Zhang, Z. Jia, Z. Fei, Y. Xu, and H. Li. 2015. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 16:1101. DOI: 10.1186/s12864-015-2312-8

Watermelon – Breeding, Genetics, Genomics, Pathology Publications

  • Ganaparthi VR, Rennberger G, Wechter WP, Levi A, Branham SE. 2023. Genome-wide association mapping and genomic prediction of Fusarium wilt race 2 resistance in the USDA Citrullus amarus collection. Plant Disease 107(12): 3836-3842. DOI: 10.1094/PDIS-02-23-0400-RE
  • Katuuramu, D.N., Levi, A., Wechter, W.P. 2024. Mapping the genetic architecture of low-temperature stress tolerance in citron watermelon. The Plant Genome. DOI: 10.1094/PDIS-02-23-0400-RE.
  • Katuuramu, D.N., Levi, A., Wechter, W.P. 2023. Genetic control of flowering time and fruit yield in citron watermelon. Horticulture Research. 14. DOI: 10.3389/fpls.2023.1236576
  • Katuuramu, D.N., Levi, A., Wechter, W. 2023. Genome-wide association study of soluble solids content, flesh color, and fruit shape in citron watermelon. The Plant Genome. 00/e20391. DOI: 10.1002/tpg2.20391.
  • Keinath, A. P., Colburn, G. C., and Yang, X. 2023. Differential susceptibility of two Citrullus amarus pollenizer watermelons to five species of Pythium and Globisporangium. Plant Dis. 107(9):2620-2623. DOI: 10.1094/PDIS-01-23-0073-SC
  • Liu M, Kang B, Wu H, Aranda MA, Peng B, Liu L, Fei Z, Hong N, Gu Q 2023. Transcriptomic and metabolic profiling of watermelon uncovers the role of salicylic acid and flavonoids in the resistance to cucumber green mottle mosaic virus. J Exp Bot 74:5218-5235. DOI: 10.1093/jxb/erad197
  • Induri, B., Nimmakayala, P., Reddy, U.K. 2023. Genomic Resources for Disease Resistance in Watermelon. In: Dutta, S.K., Nimmakayala, P., Reddy, U.K. (eds) The Watermelon Genome. Compendium of Plant Genomes. Springer, Cham. 10.1007/978-3-031-34716-0_10
  • McGregor, C., Rijal, S., Josiah, S., Adams, L. 2023. Genetics and Genomics of Fruit Quality Traits of Watermelon. In: Dutta, S.K., Nimmakayala, P., Reddy, U.K. (eds) The Watermelon Genome . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-34716-0_5
  • Patel, T., Quesada-Ocampo, L. M., Wehner, T. C., Bhatta, B. P., Correa, E., Malla, S. 2023. Recent Advances and Challenges in Management of Colletotrichum orbiculare, the Causal Agent of Watermelon Anthracnose. Horticulturae 9, no. 10: 1132. DOI: 10.3390/horticulturae9101132
  • Wong TW. S. and Quesada-Ocampo L. M. 2024. Sensitivity of Meloidogyne incognita, Fusarium oxysporum f.sp. niveum, and Stagonosporopsis citrulli to succinate dehydrogenase inhibitors used for control of watermelon diseases. Plant Disease. DOI: 10.1094/PDIS-12-22-2922-RE
  • Wu, S., Sun, H., Gao, L., Branham, S., Mcgregor, C., Xu, Y., Kousik, C.S., Wechter, W., Levi, A., Fei, Z. 2023. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal. 2023. DOI: 10.1111/pbi.14120.

  • Katuuramu, D. N., Levi, A., & Wechter, W. P. 2023. Genome-wide association study of soluble solids content, flesh color, and fruit shape in citron watermelon. The Plant Genome, 00, e20391. DOI: 10.1002/tpg2.20391

  • Katuuramu D.N., A. Levi and W.P. Wechter. 2023. Genetic control of flowering time and fruit yield in citron watermelon. Front. Plant Sci., 10 Sec. Plant BreedingVolume 14. DOI: 10.1002/tpg2.20391
  • Kousik, C.S., Ikerd, J.L., Mandal, M., Adkins, S. and Turechek, W.W. 2023. USVL531-MDR: Watermelon germplasm line with broad resistance to powdery mildew and Phytophthora fruit rot. HortScience. DOI: 10.21273/HORTSCI16907-22
  • Salcedo A., Parada-Rojas C. H., Guerrero R., Stahr M., D’Arcangelo K.N., McGregor C., Kousik C., Wehner T., and Quesada-Ocampo L. M. 2023. The NLR family of disease resistance genes in cultivated watermelon and other cucurbits: opportunities and challenges. Chapter 4. In: The Watermelon Genome. Editors: Dutta S. K. and Reddy U. Springer. DOI: 10.1007/978-3-031-34716-0_4
  • Wu, S., Sun, H., Gao, L., Branham, S., McGregor, C., Xu, Y., Kousik, C.S., Wechter, W., Levi, A., Fei, Z. 2023. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal. 2023. DOI: 10.1111/pbi.14120

  • Adams, L. and C. McGregor. 2022. QTL Associated with Resistance to Stagonosporopsis citrulli in Citrullus amarus. Sci Rep 12:19628. DOI: 10.1038/s41598-022-23704-w

  • Chanda, B., Wu, S., Fei, Z., Ling, K., Levi, A. 2022. Elevated expression of ribosome-inactivating protein (RIP) genes in potyvirus-resistant watermelon in response to viral infection. Canadian Journal of Plant Pathology. 44(4):615-625. DOI:  10.1080/07060661.2021.2021450
  • Karki, K., Negi, V.S., Coolong, T., Petkar, A., Mandal, M., Kousik, C.S., Gitaitis, R., Hajihassani, A., and Dutta, B. 2022. Micronutrients Affect Expression of Induced Resistance Genes in Hydroponically Grown Watermelon against Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens 2022, 11, 1136. DOI: 10.3390/pathogens11101136
  • Katuuramu, D.N., Branham, S.E., Levi, A., Wechter, W.P. 2022. Genome-wide association analysis of resistance to Pseudoperonospora cubensis in citron watermelon. Plant Disease. 106:1952-1958. DOI: 10.1094/PDIS-08-21-1611-RE.
  • Kousik, C.S., Ikerd, J.L., Wechter, W.P., Branham, S.E., Turechek, W.W. 2022. Broad resistance to post-harvest fruit rot in USVL watermelon germplasm lines to isolates of Phytophthora capsici from across USA. Plant Disease 106:711-719. DOI: 10.1094/PDIS-11-20-2480-RE
  • Nimmakayala, P., Natarajan, P., Lopez-Ortiz, C., Levi, A., Reddy, U.K. 2022. Population Genomics of sweet watermelon. Om P. Rajora (ed.), Population Genomics: Crop Plants, Population Genomics [Om P. Rajora (Editor-in-Chief)], © Springer Nature Switzerland AG 2022. DOI: 10.1007/13836_2022_102
  • Perez-Escobar ,O.A., Tusso S., Przelomska N.A.S., Wu S., Ryan P., Nesbitt M., Silber M.V., Preick M., Fei Z., Hofreiter M., Chomicki G., Renner S.S. 2022. Genome sequencing of up to 6,000-yr-old Citrullus seeds reveals use of a bitter-fleshed species prior to watermelon domestication. Molecular Biology Evolution Volume 39, Issue 8.  DOI: 10.1093/molbev/msac168

  • Garcia-Lozano, M., Natarajan, P., Levi, A., Katam, R., Nimmakayala, P., Reddy, U. 2021. Altered chromatin confirmation and transcriptional regulation in watermelon following genome doubling. Plant Journal. DOI: 10.1111/tpj.15256
  • Joshi, V., Nimmakayala, P., Song, Q., Abburi, V., Natarajan, P., Levi, A., Crosby, K., and Reddy, U.K. 2021. Genome-wide association study and population structure analysis of seed-bound amino acids and total protein in watermelon. PeerJ 9:e12343. DOI: 10.7717/peerj.12343
  • Joshi, V., Shinde, S., Nimmakayala, P., Abburi, V., Alaparthi, S., Lopez-Ortliz, C., Levi, A., Panicker, G., and Reddy, U. 2021. Haplotype networking of GWAS hits for citrulline content indicates positive selection leading to the domestication of watermelon. Frontiers in Plant Science. 20:5392. DOI: 10.3390/ijms20215392.
  • Karki, K., Coolong, T., Kousik, C.S., Petkar, A., Myers, B.K., Hajihassani, A., Mandal, M., Dutta, B. 2021. The Transcriptomic Profile of Watermelon Is Affected by Zinc in the Presence of Fusarium oxysporum f. sp. niveum and Meloidogyne incognita. Pathogens 2021, 10, 796. DOI:  10.3390/pathogens10070796
  • Renner SS, Wu S, Perez-Escobar OA, Silber MV, Fei Z, Chomickie G. 2021. A chromosome-level genome of a Kordofan melon illuminates the origin of domesticated watermelons. Proc Natl Acad Sci USA118:e2101486118 DOI: 10.1073/pnas.2101486118
  • Rivera-Burgos, L. A., E. J. Silverman and T. C. Wehner. 2021. NC-GSB-524W, NC-GSB-527W, NC-GSB-528W, NC-GSB-530W, NC-GSB-531W, and NC-GSB-532W Watermelon Lines with Gummy Stem Blight Resistance and Good Fruit Quality. HortScience 56(12): 1599-160434. DOI: 10.21273/HORTSCI16095-21
  • Rivera-Burgos, L.A., E. Silverman, N. Sari and T.C. Wehner. 2021. Evaluation of Resistance to Gummy Stem Blight in a Population of Recombinant Inbred Lines of Watermelon × Citron. HortScience 1:1–9.
  • Sorokina, M., Mccaffrey, K.S., Ordovas, J.M., Deaton, E.E., Ma, G., Perkins-Veazie, P.M., Steinbeck, C., Levi, A., Parnell, L.D. 2021. A catalog of natural products occurring in watermelon – Citrullus lanatus. Frontiers in Nutrition. 8:602. DOI: 10.3389/fnut.2021.729822
  • Vijay, J., Suhas, S., Venkata Lakshmi, A., Lopez, C., Padma, N., Levi, A., Umesh, R. 2021. Haplotype networking of GWAS hits for citrulline content indicates positive selection leading to the domestication of watermelon. Frontiers in Plant Science. 20:5392. DOI: 10.3390/ijms20215392

  • Aguado, E., A. Garcia, J. Iglesias-Moya, J. Romero, T. C. Wehner, M. L. Gomez-Guillamon, B. Pico, A. Garces-Claver, C. Martinez and M. Jamilena. 2020. Mapping a partial andromonoecy locus in Citrullus lanatus using BSA-Seq and GWAS approaches. Frontiers in Plant Science 11. DOI: 10.3389/fpls.2020.01243
  • Branham, S.E., W.P. Wechter, K.S. Ling, B. Chanda, L. Massey, G. Zhao, N. Guner, M. Bello, E. Kabelka, Z. Fei, and A. Levi. 2020. QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. Theoretical and Applied Genetics, 133(2), pp.677-687. DOI: 10.1007/s00122-019-03500-3.
  • Daley, J. and T. C. Wehner. 2020. Screening for bacterial fruit blotch resistance in watermelon fruit. Crop Science 60. DOI: 10.1002/csc2.20329.
  • Gimode, W. 2020. Fine-mapping of a major quantitative trait locus (QTL) controlling flowering time and QTL mapping of gummy stem blight in watermelon. PhD Dissertation University of Georgia.
  • Gimode W., K. Bao, Z. Fei, C. McGregor. 2020. QTL associated with gummy stem blight resistance in watermelon. Theor Appl Genet. DOI: 10.1007/s00122-020-03715-9
  • Gimode, W., J. Clevenger, and C. McGregor. 2020. Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Molecular Breeding, 40(1), 12 pages. DOI: 10.1007/s11032-019-1087-z
  • Guo, S., H. Sun, Y. Xu, and Z. Fei. 2020. Citrullus lanatus (Genome of the month). Trends in Genetics 36(6):456-457. DOI: 10.1016/j.tig.2020.01.010
  • Katuuramu, D.N., W.P. Wechter, M. Washington, M.I. Horry, M.A. Cutulle, R.L. Jarret, A. Levi. 2020. Phenotypic diversity for root traits and identification of superior germplasm for root breeding in watermelon. HortScience. 55:12-72-1279. DOI: 10.21273/HORTSCI15093-20 .
  • Kousik, C.S. and S. Adkins. 2020. Detection of Cucurbit yellow stunting disorder virus infecting watermelon in South Carolina. Plant Health Progress. 2:133-134. DOI: 10.1094/PHP-03-20-0016-BR
  • Mandal, M.K., H. Suren, and, C.S. Kousik. 2020. Elucidation of resistance signaling and identification of powdery mildew resistant mapping loci (ClaPMR2) during watermelon-Podosphaera xanthii interaction using RNA-Seq and whole-genome resequencing approach. Scientific Reports 10, 14038 (2020). DOI: 10.1038/s41598-020-70932-z 
  • Meru, G. and C. McGregor. 2020. Effect of various soil media on disease severity of Fusarium wilt in watermelon. American Journal of Plant Sciences, 11, 1890-1898.
  • Miller N., J. R. Standish, and L. M. Quesada-Ocampo. 2020. Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and pydiflumetofen in vitro and efficacy for Fusarium wilt management in watermelon. Plant Health Progress 21: 13-18. DOI: 10.1094/PHP-08-19-0056-RS
  • Ren, Y., H. Sun, M. Zong, S. Guo, Z. Ren, J. Zhao, M. Li, J. Zhang, S. Tian, J. Wang, Y. Yu, G. Gong, H. Zhang, H. He, L. Li, X. Zhang, F. Liu, Z. Fei, and Y. Xu. 2020. Localization shift of a sugar transporter contributes to phloem unloading in sweet watermelons. New Phytologist DOI: 10.1111/nph.16659
  • Rosa-Valentín, G., L. Wessel-Beaver and J.R.V. Rodrigues. 2020. Response of some watermelon accessions to a Puerto Rico strain of Zucchini yellow mosaic virus. HortScience 55(9):1509-1514. DOI: 10.21273/HORTSCI15166-20.
  • Trandel, M.A., P. Perkins-Veazie, and J. Schultheis. 2020. Predicting hollow heart incidence in triploid watermelon (Citrullus lanatas). HortScience. 55(12):1926-1930.DOI: 10.21273/HORTSCI15361-20

  • Branham, S.E., W.P. Wechter, K. Ling, B. Chanda, L. Massey, G. Zhao, N. Guner, M. Bello, E. Kabelka, Z. Fei, and A. Levi. 2019. QTL mapping of resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus in Citrullus amarus. Theoretical and Applied Genetics. DOI: 10.1007/s00122-019-03500-3.
  • Branham, S.E.,  A. Levi, and W.P. Wechter. 2019. QTL Mapping Identifies Novel Source of Resistance to Fusarium Wilt Race 1 in Citrullus amarus. Plant Disease 103:984-989. APS Publications: Published Online:11 Mar 2019. DOI: 10.1094/PDIS-09-18-1677-RE
  • Branham, S.E., A. Levi, M.L. Katawczik, and W.P. Wechter. 2019. QTL mapping of resistance to bacterial fruit blotch in Citrullus amarus. Theoretical and Applied Genetics. DOI: 10.1007/s00122-019-03292-6
  • Gimode, W., Lonnee, M. & C. McGregor. 2019. Resistance response of Citrullus genotypes to Stagonosporopsis spp. isolates causing gummy stem blight. Cucurbit Genetics Cooperative Report 42: 1-6.
  • Guner, N., Z. Pesic-VanEsbroeck, L.A. Rivera-Burgos and T.C. Wehner. 2019. Screening for resistance to Zucchini yellow mosaic virus in the watermelon germplasm. HortScience 54: 206-211. DOI: 10.21273/HORTSCI13325-18.
  • Guo, S., S. Zhao, H. Sun, X. Wang, S. Wu, T. Lin, Y. Ren, L. Gao, Y. Deng, J. Zhang, X. Lu, H. Zhang, J. Shang, G. Gong, C. Wen, N. He, S. Tian, M. Li, J. Liu, Y. Wang, Y. Zhu, R. Jarret, A. Levi, X. Zhang, S. Huang, Z. Fei, W. Liu, Y. Xu. 2019. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics 51:1616-1623. DOI: 10.1038/s41588-019-0518-4
  • Joshi, V., S. Shinde, P. Nimmakayala, V.L. Abburi, S.B. Alaparthi, C. Lopez-Ortiz, and U.K. Reddy. 2019. Haplotype networking of GWAS hits for citrulline variation associated with the domestication of watermelon. Int J Mol Sci 20:5392. DOI:  10.3390/ijms20215392
  • Kousik, C.S., J.L. Ikerd, and M.K. Mandal. 2019. Relative susceptibility of commercial watermelon varieties to powdery mildew. Crop Protection 125:104910. DOI: 10.1016/j.cropro.2019.104910
  • Simmons, A.M., R.L. Jarret, C.L. Cantrell, and A. Levi. 2019. Citrullus ecirrhosus: Wild source of resistance against Bemisia tabaci (Hemiptera: Aleyrodidae) for cultivated watermelon. Journal of Economic Entomology DOI: 10.1093/jee/toz069.
  • Suchoff, D.H., J.R. Schultheis, C.C. Gunter, R.L. Hassell, and F.J. Louws. 2019. DOI: 10.1080/14620316.2019.1624629 
  • Sui, X., R. Li, M. Shamimuzzaman, Z. Wu, and K.S. Ling. 2019. Understanding the transmissibility of cucumber green mottle mosaic virus in watermelon seeds and seed health assays. Plant Disease. DOI: 10.1094/PDIS-10-18-1787-RE
  • Simmons, A.M., R.L. Jarret, C.L. Cantrell, and A. Levi. 2019. Citrullus ecirrhosus: Wild source of resistance against Bemisia tabaci (Hemiptera: Aleyrodidae) for cultivated watermelon. Journal of Economic Entomology DOI: 10.1093/jee/toz069
  • Wu, S., X. Wang, U. Reddy, H. Sun, K. Bao, L. Gao, L. Mao, T. Patel, C. Ortiz, V. Abburi, P. Nimmakayala, S. Branham, P. Wechter, L. Massey, K. Ling, S. Kousik, S. Hammar, Y. Tadmor, V. Portnoy, G. Vitaly, K. Amit; N. Katzir,  N. Guner, Nihat; A. Davis, A. Hernandez, C. Wright, C. McGregor, R. Jarret, X. Zhang, Y. Xu, T. Wehner, R. Grumet, A. Levi, and Z. Fei. 2019. Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnology J 17:2246-2258. DOI: 10.1111/pbi.13136

  • Branham, S.E., W.P. Wechter, S. Lambel, L. Massey, M. Ma, J. Fuave, M.W. Farnham, and A. Levi. 2018. QTL-seq and marker development for resistance to Fusarium oxysporum f. sp. niveum race 1 in cultivated watermelon. Molec Breed 38:139. DOI: 10.1007/s11032-018-0896-9
  • Fall, L.A., J. Clevenger, C. McGregor. 2018. Assay development and marker validation for marker assisted selection of Fusarium oxysporum f. sp. niveum race 1 in watermelon. Molec Breed 38:130. DOI: 10.1007/s11032-018-0890-2
  • Guner, N., Z. Pesic-VanEsbroeck, L.A. Rivera-Burgos, and T.C. Wehner. 2018. Inheritance of resistance to Papaya ringspot virus-watermelon strain in watermelon. HortScience 53(5): 1-4. DOI: 10.21273/HORTSCI12944-18
  • Guner, N., L.A. Rivera-Burgos, and T.C. Wehner. 2018. Inheritance of resistance to Zucchini yellow mosaic virus in watermelon. HortScience 53: 1115-1118. DOI: 10.21273/HORTSCI13169-18
  • Kantor, M., A. Levi. 2018. Utilizing genetic resources and precision agriculture to enhance resistance to biotic and abiotic stress in watermelon. Notulae Scientia Biologicae. 10: 2067-3205. DOI: 10.15835/nsb10110242
  • Kantor, M., A. Levi, J.A. Thies, N. Guner, C. Kantor, S. Parnham, A. Boroujerdi. 2018. NMR analysis reveals a wealth of metabolites in root-knot nematode resistant roots of Citrullus amarus watermelon plants. Journal of Nematology. 50:1-15. DOI: 10.21307/jofnem-2018-030
  • Kousik, C.S., J. Ikerd, M. Manda, S. Adkins, W.W. Turechek. 2018. Watermelon germplasm lines USVL608-PMR, USVL255-PMR, USVL313-PMR, and USVL585-PMR with broad resistance to powdery mildew. HortScience 53:1212-1217. DOI: 10.21273/HORTSCI12979-18
  • Kousik, C.S., J.L. Ikerd, and W. Turechek. 2018. Development of Phytophthora fruit rot caused by Phytophthora capsici on resistant and susceptible watermelon fruit of different ages. Plant Disease 102:370-374. DOI: 10.1094/PDIS-06-17-0898-RE
  • Kousik, C.S., M.K. Mandal, and R. Hassell. 2018. Powdery mildew resistant rootstocks that impart tolerance to grafted susceptible watermelon scion seedlings. Plant Disease. Plant Disease. 102:1290-1298. DOI: 10.1094/PDIS-09-17-1384-RE
  • Saminathan, T., M. García , B. Ghimire, C. Lopez, A. Bodunrin, P. Nimmakayala, V.L. Abburi, A. Levi, N. Balagurusamy, U.K. Reddy. 2018. Metagenomic and metatranscriptomic analyses of diverse watermelon cultivars reveal the role of fruit associated microbiome in carbohydrate metabolism and ripening of mature fruits. Front Plant Sci. 9:4. DOI:  10.3389/fpls.2018.00004

  • Branham, S., L. Vexler, A. Meir, G. Tzuri, Z. Frieman, A. Levi, W.P. Wechter, Y. Tadmor and A. Gur. 2017. Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon. Mol. Breeding DOI: 10.1007/s11032-017-0747-0
  • Gusmini, G., L.A. Rivera-Burgos and T.C. Wehner. 2017. Inheritance of resistance to gummy stem blight in watermelon. HortScience 52: 1477-1482. DOI: 10.21273/JASHS03834-16
  • Kousik, C.S., P. Ji, D. Egel, and L.M. Quesada-Ocampo.  2017. Fungicide rotation schemes for managing Phytophthora fruit rot of watermelon across Southeastern United States. Plant Health Progress 18: 28-34. DOI: 10.1094/PHP-RS-16-0059
  • Levi, A. and K. Ling. USVL-380, a Zucchini yellow mosaic virus-resistant watermelon breeding line. 2017. HortScience 52:1448–1450. DOI: 10.21273/HORTSCI12292-17
  • Levi, A., A.M. Simmons, L. Massey, J. Coffey, W.P. Wechter, R.L. Jarret, Y. Tadmor, P. Nimmakayala, and U.K. Reddy.  2017.  Genetic diversity in the desert watermelon Citrullus colocynthis and its relationship with Citrullus species as determined by high-frequency oligonucleotides-targeting active gene markers.  J. Amer. Soc. Hort. Sci. 142(1):47–56. DOI: 10.21273/JASHS03834-16
  • Ren, Y., S. Guo, J. Zhang, H. He, H. Sun, S. Tian, G. Gong, H. Zhang, A. Levi, Y. Tadmor, and Y. Xu. 2017. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology DOI: 10.1104/pp.17.01290
  • Wehner, T.C., R.P. Naegele and P. Perkins-Veazie. 2017. Heritability and genetic variance components associated with citrulline, arginine, and lycopene content in diverse watermelon cultigens. HortScience 52: 936-940. DOI: 10.21273/HORTSCI11255-16

  • Branham, S.E., A. Levi, M.W. Farnham, and W.P. Wechter. 2016. A GBS‑SNP‑based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. Niveum race 2 identified in Citrullus lanatus var. citroides.  Theor Appl Genet. 2017 Feb;130(2):319-330. Epub 2016 Nov 1. DOI: 10.1007/s00122-016-2813-0
  • Kousik, C.S., J. Brusca, and W. W. Turechek. 2016. Diseases and disease management strategies take top research priority in the Watermelon Research and Development Group members survey (2014 to 2015). Plant Health Progress. 17:53-58. DOI: 10.1094/PHP-S-15-0047
  • Levi, A., J. Coffey, L.M. Massey, N. Guner, E. Oren, Y. Tadmor, and K.S. Ling. 2016. Resistance to papaya ringspot virus-watermelon strain (PRSV-W) in the desert watermelon Citrullus colocynthis. HortScience 51:4–7. DOI: 10.21273/HORTSCI.51.1.4
  • Levi, A., R.K. Harris-Shultz, and K.S. Ling. 2016. USVL-370, a Zucchini yellow mosaic virus–resistant Watermelon Breeding Line. HortScience 51:107–109. DOI: 10.21273/HORTSCI12292-17
  • Meru, G. and C. McGregor. 2016. Genotyping by sequencing for SNP discovery and genetic mapping of resistance to race 1 of Fusarium oxysporum in watermelon. Scientia Horticulturae 209: 31-40. DOI: 10.1016/j.scienta.2016.06.005
  • Natwick, E., M.I. Lopez, W.M. Wintermantel, J.D. McCreight, O. Batuman, and R.L. Gilbertson. 2016. Watermelon whitefly insecticide efficacy trial, 2015. Arthropod Management Tests 41 (1): tsw088 DOI: 10.1093/amt/tsw088
  • Niu, X., X. Zhao, K. Ling, A. Levi, Y. Sun, and M. Fan. 2016. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum – watermelon pathosystem. Nature Scientific Reports 6:28146. DOI: 10.1038/srep28146
  • Thies, J.A., J.J. Ariss, C.S. Kousik, R.L. Hassell, and A. Levi. 2016. Resistance to Southern Root-knot Nematode (Meloidogyne incognita) in Wild Watermelon (Citrullus lanatus var. citroides) Populations. Journal of Nematology 48:14–19. DOI: 10.21307/jofnem-2017-004
  • Wechter, W.P., M.M. McMillan, M.W. Farnham, and A. Levi. 2016. Watermelon germplasm lines USVL246-FR2 and USVL252-FR2 tolerant to Fusarium oxysporum f. sp. niveum race 2. HortScience 51:1065-1067. DOI: 10.21273/HORTSCI.51.8.1065

Cucurbits (multiple crops & species) Breeding, Genetics, and Genomics

  • Lebeda A., E. Křístková, B. Mieslerová, N.P.S. Dhillon, and J.D. McCreight. 2024. Status, Gaps and Perspectives of Powdery Mildew Resistance Research and Breeding in Cucurbits. Critical Reviews in Plant Sciences:1-80. DOI: 10.1080/07352689.2024.2315710.
  • Mo C, Wang H, Wei M, Zeng Q, Zhang X, Fei Z, Zhang Y, Kong Q (2024) Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. Plant Journal https://doi.org/10.1111/tpj.16705
  • Wu, S., Sun, H., Gao, L., Branham, S., Mcgregor, C., Xu, Y., Kousik, C.S., Wechter, W., Levi, A., Fei, Z. 2023. A Citrullus genus super-pangenome reveals extensive variations in wild and cultivated watermelons and sheds light on watermelon evolution and domestication. Plant Biotechnology Journal. 2023. https://doi.org/10.1111/pbi.14120

  • Yu, J., Wu, S., Sun, H., Wang, X., Tang, X., Guo, S., Zhang, Z., Huang, S., Xu, Y., Weng, Y., Mazourek, M., McGregor, C., Renner, S.S., Branham, S., Kousik, C., Wechter, W.P., Levi, A., Grumet, R., Zheng, Y., Fei, Z. 2022. CuGenDBv2: An updated database for cucurbit genomics. Nucleic Acids Research 51: D1457-D1464. DOI: 10.1093/nar/gkac921
  • Fulton JC, Cullen MA, Beckham K, Sanchez T, Xu Z, Stern P, Vallad G, Meru G, McGregor C, Dufault NS. 2021. A contrast of three inoculation techniques used to determine the race of unknown Fusarium oxysporum f.sp. niveum isolates. J Vis Exp. (176). DOI: 10.3791/63181. PMID: 34779434
  • Grumet, R., J.D. McCreight, C. McGregor, Y. Weng, M. Mazourek, K. Reitsma, J. Labate, A. Davis, and Z. Fei. 2021. Genetic resources and vulnerabilities of major cucurbit crops. Genes, 12(8), 1222. DOI: 10.3390/genes12081222
  • Mondal S, Jenkins Hladky LL, Melanson RA, Singh R, Sikora E, Wintermantel WM. 2021. First report of cucurbit yellow stunting disorder virus and cucurbit chlorotic yellows virus in cucurbit crops in Alabama. Plant Dis. 2021 Jun 28. DOI: 10.1094/PDIS-05-21-0922-PDN.
  • Peng B, Liu L, Wu H, Kang B, Fei Z, Gu Q. 2021. Interspecific recombination between Zucchini tigre mosaic virus and Papaya ringspot virus infecting cucurbits in China. Frontiers in Microbiology 12:773992
  • Kavalappara, S.R., Milner, H., Konakalla, N.C., Morgan, K., Sparks, A.N., McGregor, C., Culbreath, A.K., Wintermantel, W.M., and S. Bag. 2021. High throughput sequencing-aided survey reveals widespread mixed infections of whitefly-transmitted viruses in cucurbits in Georgia, USA. Viruses 13:988 DOI: 10.3390/v13060988

  • Grumet et al., 2020. The CucCAP project: Leveraging applied genomics to improve disease resistance in cucurbit crops. Proceedings 6th International Symposium on Cucurbits. Ghent, Belgium. Eds: Bleyaert, P and M.C. V. Labeke. Ghent, Belgium. Acta Horticuluturae 1294:91-104.
  • Guo, S., H. Sun, Y. Xu, and Z. Fei. 2020. Citrullus lanatus. Trends in Genetics | (Genome of the Month). DOI: 10.1016/j.tig.2020.01.010
  • Ma L., Q. Wang, J. Mu, A. Fu, C. Wen, X. Zhao, L. Gao, J. Li, K. Shi, Y. Wang, X. Zhang, X. Zhang, Z. Fei, D. Grierson, J. Zuo. 2020. The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Horticulture Research 7: 19. DOI: 10.1038/s41438-020-00423-9
  • Pan, Y.P., Y.H. Wang, C. McGregor, S. Liu, F.S. Luan, M.L. Gao, and Y. Weng. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133: 1-21. DOI: 10.1007/s00122-019-03481-3
  • Wehner, T.C. and R.P. Naegele. 2019. Advances in breeding of cucumber and watermelon (p. 188). Burleigh Dodds Science Publishing, Cambridge, UK, 225 p. DOI: 10.19103/AS.2019.0045.30
  • Wehner, T.C., R. Naegele, J. Myers, K. Crosby, and N.P.S. Dhillon. 2019. Cucurbits. CAB International, New York, NY, 225 p.
  • Weng, Y., Garcia-Mas, J., Levi, A., Luan, F. 2020. Editorial: translational research for cucurbit molecular breeding: traits, markers, and genes. Frontiers in Plant Science. 11. Article 615346. DOI: 10.3389/fpls.2020.615346
  • Zhang, Z., Y. Zheng, B.K. Ham, S. Zhang, Z. Fei, and W.J. Lucas. 2019. Plant lncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency. J Integr Plant Biol 61:492-508.DOI: 10.1111/jipb.12715

  • Dhillon, N.P.S., S. Sanguansil, S. Srimat, R. Schafleitner, B. Manjunath, P. Agarwal, Q. Xiang, M.A.T. Masud, T. Myint, N.T. Hanh, T.K. Cuong, C.H. Balatero, V. Salutan-Bautista, M. Pitrat, A. Lebeda, and J.D. McCreight. 2018. Cucurbit powdery mildew-resistant bitter gourd breeding lines reveal four races of Podosphaera xanthii in Asia. HortScience 53:337–341. DOI: 10.21273/HORTSCI12545-17
  • Kousik, C.S., J.L. Ikerd, M.K. Mandal, S. Adkins, C.G. Webster, and W.W. Turechek. 2018. Powdery mildew-resistant bottle gourd germplasm lines: USVL351-PMR and USVL482-PMR. HortScience 53(8):1224-1227. DOI: 10.21273/HORTSCI13067-18
  • Mansfeld, B.N., and R. Grumet. 2018. QTLseqr: An R package for bulk segregant analysis with next generation sequencing. The Plant Genome. DOI: 10.3835/plantgenome2018.01.0006
  • Zheng, Y.,  S. Wu, Y. Bai, H. Sun, C. Jiao, S. Guo, K. Zhao, J. Blanca, Z. Zhang, S. Huang, Y. Xu, Y. Weng, M. Mazourek, U.K. R., K. Ando, J.D. McCreight, A.A. Schaffer, J. Burger, Y. Tadmor, N. Katzir, X. Tang, Y. Liu, J.J. Giovannoni, K. Ling, W.P. Wechter, A. Levi, J. Garcia-Mas, R. Grumet, and Z. Fei. 2018. Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, Volume 47, Issue D1, 8 January 2019, Pages D1128–D1136. DOI: 10.1093/nar/gky944

  • Cutulle, M.A., H. Harrison, C.S. Kousik, P. Wadl, and A. Levi. 2017. Bottle gourd genotypes vary in clomazone tolerance. HortScience 52:1687–1691. DOI: 10.21273/HORTSCI12201-17
  • Dia, M., T.C. Wehner, and C. Arellano. 2017. RGxE: An R program for genotype x environment interaction analysis. Amer. J. Plant Sci. 8: 1672-1698. DOI10.4236/ajps.2017.87116
  • Dhillon, N.P.S., S. Phethin, S. Sanguansil, and J.D. McCreight. 2017. Early staminate flowering monoecious lines have potential as pollenizers for gynoecious hybrid bitter gourd cultivars. Pak. J. Agri. Sci. 54:27–33. View at ResearchGate.
  • Grumet, R., J. Garcia-Mas, and N. Katzir. 2017. Cucurbit Genetics and Genomics: A Look to the Future. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI: 10.1007/7397_2017_1
  • Grumet, R., N. Katzir, and J. Garcia-Mas. 2017. Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models. Vol. 20 Springer International Publishing. ISBN978-3-319-49330-5.  DOI: 10.1007/978-3-319-49332-9
  • Levi, A., R. Jarret, S. Kousi., P. Wechter, P. Nimmakayala, and U.K. Reddy. 2017. Genetic Resources of Watermelon. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI: 10.1007/7397_2016_34
  • McCreight, J.D. 2017. Botany and culture (p. 1-9). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn.Published Online:10.1094/9780890545744.001
  • McCreight, J.D. and A.P. Keinath. 2017. Crown blight of melons and crown decline of watermelon (p. 185–186). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.004
  • Nimmakayala, P., T. Saminathan, V. L. Abburi, L. K. Yadav, Y. Tomason, A. Levi, Y. Weng, and U.K. Reddy. 2017. Comparative Genomics of the Cucurbitaceae. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI: 10.1007/7397_2017_2
  • Sun, H., S. Wu, G. Zhang, C. Jiao, S. Guo, Y. Ren, J. Zhang, H. Zhang, G. Gong, Z. Jia, F. Zhang, J. Tian, W.J. Lucas, J.J. Doyle, H. Li, Z. Fei, Y. Xu. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant, DOI: 10.1016/j.molp.2017.09.003
  • Wehner, T.C. 2017. Bitter fruit (p. 185). In: A.P. Keinath, W. M. Wintermantel and T. A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.004
  • Wehner, T.C. 2017. Pollination problems (p. 188). In: A.P. Keinath, W. M. Wintermantel and T. A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.004
  • Weng, Y., and T.C. Wehner. 2017. Cucumber Gene Catalog 2017. Cucurbit Genetics Cooperative 2017 issues 34-35
  • Wu, S., M. Shamimuzzaman, H. Sun, J. Salse, X. Sui, A. Wilder, Z. Wu, A. Levi, Y. Xu, K-S. Ling, and Z. Fei. 2017. The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ringspot virus resistance locus. Plant Journal 92(5):963-975. DOI: 10.1111/tpj.13722

  • Dhillon, N.P.S., S. Sanguansil, R. Schafleitner, Y.-W. Wang, and J.D. McCreight. 2016. Diversity among a wide Asian Collection of bitter gourd landraces and their genetic relationships with commercial hybrid cultivars. J. Amer. Soc. Hort. Sci. 141:475–484. DOI: 10.21273/JASHS03748-16.
  • Kousik, C. S., J. Ikerd, and M. Mandal. 2016. First report of fruit rot of ridge gourd (Luffa acutangula) caused by Sclerotium rolfsii. Plant Health Progress. 17:13-14. [PDF] DOI: 10.1094/PHP-BR-15-0048.
  • Bai, Y., Z. Zhang, and Z. Fei. 2016. Databases and Bioinformatics for Cucurbit Species. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI: 10.1007/7397_2016_27
  • Dhillon, N.P.S., S. Sanguansil, S.P. Singh, M.A.T. Masud, P. Kumar, L.K. Bharathi, H. Yetisir, R. Huang, D.X. Canh, and J.D. McCreight. 2016. Gourds: Bitter, bottle, wax, snake, sponge and ridge. Chapter 7. DOI: 10.1007/7397_2016_24
  • Grumet, R. and M. Colle. 2016. Genomic Analysis of Cucurbit Fruit Growth. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI: 10.1007/7397_2016_4
  • McCreight, J.D. 2016. Cultivation and Uses of Cucurbits. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. DOI: 10.1007/7397_2016_2
  • Naegele, R.P. and T.C. Wehner. 2016. Genetic Resources of Cucumber. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. DOI: 10.1007/7397_2016_15
  • Weng, Y., 2016. The Cucumber Genome. In: Grumet R., Katzir N., Garcia-Mas J. (eds.) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham DOI 10.1007/7397_2016_6

Integrated Crop and Disease Management

  • Guo, Y., Krasnow, C., and Hausbeck, M.K. 2023. Characterizing the dynamics of virulence and fungicide resistance of Phytophthora capsici in Michigan vegetable fields reveals loci associated with virulence. Plant Disease 24 (108):332-341. DOI: 10.1094/PDIS-03-23-0576-RE
  • Heagy, K., M. Knuth, J.R. Schultheis, T. Birdsell, , and J.K. Ward. 2023. Using partial budgeting analyses to analyze profitability of commercial pumpkin production, standardizing bin size categories and understand bin sorting accuracy. HortScience. 58(12):1587-1594. DOI: 10.21273/HORTSCI17499-23
  • Heagy, K., J.R. Schultheis, T. Birdsell, M. Knuth, and J.K. Ward. 2023. High-density planting and a smaller row width increased yield and decreased fruit size of pumpkins. HortScience. 58(10): 11194-1200. DOI: 10.21273/HORTSCI17337-23
  • Indermaur, EJ, Day, CTC, Dunn-Silver, AR, and Smart, CD.  2024. Biorational fungicides to manage cucurbit powdery mildew on winter squash in New York. Plant Health Progress. DOI: 10.1094/PHP-11-23-0103-RS.
  • Keinath, A. P. 2022. Reduced sensitivity of Pseudoperonospora cubensis clades 1 and 2 to oxathiapiprolin in South Carolina. Plant Health Prog. 23(3):256-259.DOI: 10.1094/PHP-12-21-0148-SC
  • Keinath, A. P. 2023. Congruent and differential responses of Pseudoperonospora cubensis clades 1 and 2 to downy mildew fungicides.Plant Health Progress. DOI: 10.1094/PHP-01-23-0007-SC.
  • Pitter, P.L., Mondal, S., Gaye Chang, P., Myers Morgan, L., Aikman, S., Wintermantel, W.M., and Tennant, P.F.  2024. First report of cucurbit yellow stunting disorder virus infecting cucurbit crops in Jamaica. Plant Disease Published: 1 Apr 2024. DOI: 10.1094/PDIS-08-23-1551-PDN.
  • Quesada-Ocampo, L.M., Parada-Rojas, C.H., Hansen, Z., Vogel, G., Smart, C., Hausbeck, M.K., Carmo, R.M., Huitema, E., Naegele, R.P.*, Kousik, C.S., Tandy, P., and Lamour, K*. 2023. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description. Annual Review of Phytopathology 61:185-208. DOI: 10.1146/annurev-phyto-021622-103801.
  • Rodriguez-Herrera, KD, Ma, X, Swingle, B, Pethybridge, SJ, Gonzalez-Giron, JL, Herrmann, TQ, Damann, K, and Smart, CD. 2023. First report of cucurbit yellow vine disease caused by Serratia marcescens on cucurbits in New York. Plant Disease 107:3276.DOI: 10.1094/PDIS-06-23-1051-PDN.
  • Shirley A. M., Vallad G. E., Quesada-Ocampo L. M., Dufault N., and Raid R. (2023) Effect of cucurbit host, production region, and season on the population structure of Pseudoperonospora cubensis in Florida. Plant Disease: 108: 442-450. DOI: 10.1094/PDIS-12-22-2939-RE.
  • Uebbing, M.R., Hayden, Z.D., and Hausbeck, M.K. 2024. Scheduling Fungicide Applications for Cucurbit Downy Mildew Control on Pickling Cucumber in Michigan using Disease Forecasters. Plant Health Progress 25:64-71. DOI: 10.1094/PHP-07-23-0066-RS.
  • Uebbing, M.R., Hayden, Z.D., and Hausbeck, M.K. 2024. Conventional and Biopesticide Fungicides for Cucurbit Downy Mildew Control on Cucumber in Michigan. Plant Health Progress 25:9-18. DOI: 10.1094/PHP-03-23-0024-RS.

  • D’Arcangelo K.N., Wallace E.C., Miles T.D., and Quesada-Ocampo L. M. 2023. Carboxylic acid amides but not Quinone outside Inhibitor fungicide resistance mutations show clade-specific occurrence in Pseudoperonospora cubensis causing downy mildew in commercial and wild cucurbits. Phytopathology 113: 80-89. DOI: 10.1094/PHYTO-05-22-0166-R
  • Guo, Y., Krasnow, C., and Hausbeck, M.K. 2023. Characterizing the dynamics of virulence and fungicide resistance of Phytophthora capsici in Michigan vegetable fields reveals loci associated with virulence. Plant Disease. DOI: 10.1094/PDIS-03-23-0576-RE
  • Higgins, D.S., Goldenhar, K.E., Kenny, G.E., Perla, D.E., and Hausbeck, M.K. 2023. An evaluation of year-to-year fungicide efficacy and cultivar resistance combined with fungicide programs to manage cucumber downy mildew. Crop Protection 168:106176. DOI: 10.1016/j.cropro.2022.106176
  • Keinath, A. P., Colburn, G. C., and Yang, X. 2023. Differential susceptibility of two Citrullus amarus pollenizer watermelons to five species of Pythium and Globisporangium. Plant Dis. 107(9):2620-2623.
  • Quesada-Ocampo, L.M., Parada-Rojas, C.H., Hansen, Z., Vogel, G., Smart, C., Hausbeck, M.K., Carmo, R.M., Huitema, E., Naegele, R.P., Kousik, C.S., Tandy, P., and Lamour, K. 2023. Phytophthora capsici: Recent Progress on Fundamental Biology and Disease Management 100 Years After Its Description. Annual Review of Phytopathology 61:185-208. DOI: 10.1146/annurev-phyto-021622-103801
  • Salcedo A., Parada-Rojas C. H., Guerrero R., Stahr M., D’Arcangelo K.N., McGregor C., Kousik C., Wehner T., and Quesada-Ocampo L. M. 2023. The NLR family of disease resistance genes in cultivated watermelon and other cucurbits: opportunities and challenges. Chapter 4. In: The Watermelon Genome. Editors: Dutta S. K. and Reddy U. Springer. DOI: 10.1007/978-3-031-34716-0_4
  • Uebbing, M.R., Hayden, Z.D., and Hausbeck, M.K. 2023. Scheduling Fungicide Applications for Cucurbit Downy Mildew Control on Pickling Cucumber in Michigan using Disease Forecasters. Plant Health Progress. DOI: 10.1094/PHP-07-23-0066-RS
  • Uebbing, M.R., Hayden, Z.D., and Hausbeck, M.K. 2023. Conventional and Biopesticide Fungicides for Cucurbit Downy Mildew Control on Cucumber in Michigan. Plant Health Progress. DOI: 10.1094/PHP-03-23-0024-RS

  • Adeleke IA, Kavalappara SR, McGregor C, Srinivasan R, Bag S. 2022. Persistent and asymptomatic virus infections are common along with whitefly-transmitted viruses impacting cantaloupe and watermelon in Georgia, USA. Viruses 14, 1310. DOI: 10.3390/v14061310
  • Adeleke IA, Kavalappara SR, Torrance T, Bennett JE, McGregor C, Srinivasan R, Bag S. 2022. First report of watermelon crinkle leaf-associated virus 1 naturally infecting watermelon (Citrullus lanatus) in Georgia, USA. Plant Disease 106:8, 2273 DOI: 10.1094/PDIS-11-21-2521-PDN
  • Bello Rodriguez, J.C., Higgins, D.S., Sakalidis, M., Quesada-Ocampo, L., Martin, F.N., and Hausbeck, M.K. 2022. Clade-specific monitoring of airborne Pseudoperonospora spp. Sporangia using mitochondrial DNA markers for disease management of cucurbit downy mildew. Phytopathology 112(10): 2110-2125. 2015-51181-24285 DOI: 10.1094/PHYTO-12-21-0500-R
  • Egel D., Adkins S., Wintermantel B., Keinath A., D’Arcangelo K., Parada-Rojas C. H., Rennberger G., Toporek S., Hausbeck M., and Quesada-Ocampo L. 2022. Diseases of cucumbers, melons, pumpkins, squash, and watermelons. In: Handbook of Plant Disease Management. Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Gursewak, S., Ward, B., Levi, A., Cutulle, M. 2022. Weed management by summer cover crops, solarization and anaerobic soil disinfestation in plasticulture. HortScience. DOI: 10.3390/agronomy12112754
  • Govindasamy, Ramu; Arumugam, Surendran; Hausbeck, Mary; Wyenandt, Andrew; Simon, James E. 2022. The impact of downy mildew on high-value cucurbit crops in the US: an econometric analysis. Agricultural Economics Research Review 35: 37-44. DOI: 10.5958/0974-0279.2022.00003.9
  • Higgins, D. S, Goldenhar, K. E., Kenny, G. G., Perla, D. M., and Hausbeck, M. K. 2022. An Evaluation of Year-to-Year Fungicide Efficacy and Cultivar Resistance Combined with Fungicide Programs to Manage Cucumber Downy Mildew. Crop Protection (In Press). DOI: 10.2139/ssrn.4239305
  • Keinath, A. P. 2022. Reduced sensitivity of Pseudoperonospora cubensis clades 1 and 2 to oxathiapiprolin in South Carolina. Plant Health Prog. 23(3):256-259.
  • Kilduff, Alice and Daniel Tregeagle. 2022. Willingness-to-Pay for Produce: A Meta-Regression Analysis Comparing the Stated Preferences of Producers and Consumers. Horticulturae, 2022, 8(4), 290.
  • Parada-Rojas C. H.S and Quesada-Ocampo L. M. 2022. Phytophthora capsici populations are structured by geography, host, and fluopicolide sensitivity. Phytopathology 112: 1559-1567.
  • Sanogo, S., Lamour, K., Kousik, C.S., Lozada, D.N., Parada Rojas, C.H., Quesada-Ocampo, L., Wyenandt, C.A., Babadoost, M., Hausbeck, M.K., Hansen, Z., Ali, E., McGrath, M., Hu, J., Crosby, K., Miller, S.A. 2022. Phytophthora capsici, 100 years later: Research mile markers from 1922 to 2022. Phytopathology. DOI: 10.1094/PHYTO-08-22-0297-RVW
  • Shirley A. M., Vallad G. E., Dufault N., Raid R., and Quesada-Ocampo L. M.  2022. Duration of disease control for fungicides against cucurbit downy mildew under Florida field conditions. Plant Disease 106: 1167-1174.
  • Vogel, G, Giles, G, Robbins, K R, Gore, M A, and Smart C D. 2022. Quantitative genetic analysis of interactions in the pepper-Phytophthora capsici pathosystem. Molecular Plant-Microbe Interactions 35:1018-1033

  • Bello Rodriguez, J.C., Hausbeck, M., and Sakalidis, M.L. 2021. Application of target enrichment sequencing for population genetic analyses of the obligate plant pathogens Pseudoperonospora cubensis and P. humuli in Michigan.  Molecular Plant-Microbiome Interactions 34(10): 1103-1118. 2015-51181-24285 DOI: 10.1094/MPMI-11-20-0329-TA
  • Bello Rodriguez, J.C., Sakalidis, M.L., Perla, D., and Hausbeck, M.K. 2021. Detection of Airborne Sporangia of Pseudoperonospora cubensis and P. humuli in Michigan using Burkard Spore Traps Coupled to Quantitative PCR.  Plant Disease 105(5):1373-1381. DOI: 10.1094/PDIS-07-20-1534-RE
  • Chanda, B., Shamimuzzaman, M., Gilliard, A., and Ling, K.-S. 2021. Effectiveness of disinfectants against the spread of tobamoviruses: Tomato brown rugose fruit virus and Cucumber green mottle mosaic virus. Virology Journal 18:7 DOI: 10.1186/s12985-020-01479-8
  • Crandall, S.G., Ramon, M.L., Burkhardt, A.K., Bello, J.C., Adair, N., Gent, D.H., Hausbeck, M.K., Quesada-Ocampo, L.M., and Martin, F.N. 2021. A multiplex TaqMan qPCR assay for detection and quantification of clade 1 and clade 2 isolates of Pseudoperonospora cubensis and Pseudoperonospora humuli.  Plant Disease 105: 3154-3161. DOI: 10.1094/PDIS-11-20-2339-RE 
  • D’Arcangelo K. N., Adams M. L., Kerns J. P., and Quesada-Ocampo L. M. 2021. Assessment of fungicide product applications and program approaches for control of downy mildew on pickling cucumber in North Carolina. Crop Protection 140: 105412. DOI: 10.1016/j.cropro.2020.105412
  • D’Arcangelo K., Quesada-Ocampo L. M., and Hausbeck M. K. 2021. Diseases of cucurbits: Cucurbit downy mildew. In: Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Fulton JC, Cullen MA, Beckham K, Sanchez T, Xu Z, Stern P, Vallad G, Meru G, McGregor C, Dufault NS. (2021) A Contrast of Three Inoculation Techniques used to Determine the Race of Unknown Fusarium oxysporum f.sp. niveum Isolates. J Vis Exp. (176). doi: 10.3791/63181. PMID: 34779434.
  • Govindasamy, R., Arumugam, S., Gao, G., Hausbeck, M.K., Wyenandt, A., and Simon, J. 2021. Downy Mildew Impacts and Control Measure on Cucurbits in the United States.  Journal of the American Society of Farm Managers and Rural Appraisers 2021:78-88.
  • Kavalappara, S.R., Milner, H., Konakalla, N.C., Morgan, K., Sparks, A.N., McGregor, C., Culbreath, A.K., Wintermantel, W.M. & S. Bag. 2021. High throughput sequencing-aided survey reveals widespread mixed infections of whitefly-transmitted viruses in cucurbits in Georgia, USA. Viruses13(6),988; DOI: 10.3390/v13060988
  • Keinath, A. P. (2021). Diseases of cucurbits: anthracnose. In: Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Kousik C., Quesada-Ocampo L. M., Keinath A., Hausbeck M., Granke L., Naegele R., and Ji P. 2021. Managing stubborn oomycete plant pathogens. Plant Health Progress 22: 215-218.
  • Kwak, H.R., H.S., Byun, H.S. Choi, J.W. Han, C.S. Kim, W.M. Wintermantel, J.E. Kim, and M. Kim. 2021. First report of cucurbit chlorotic yellows virus infecting cucumber in South Korea. Plant Dis. DOI: 10.1094/PDIS-10-20-2254-PDN.
  • Mondal S, Jenkins Hladky LL, Melanson RA, Singh R, Sikora E, Wintermantel WM. 2021. First report of cucurbit yellow stunting disorder virus and cucurbit chlorotic yellows virus in cucurbit crops in Alabama. Plant Dis. 2021 Jun 28. DOI: 10.1094/PDIS-05-21-0922-PDN
  • Parada-Rojas C. H., Quesada-Ocampo L. M., and Hausbeck M. K. 2021. Diseases of cucurbits: Phytophthora blight. In: Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Parada-Rojas, C.H., Granke, L.L., Naegele, R.P, Hansen, Z., Hausbeck, M.K., Kousik S., McGrath M. T., Smart C., and Quesada-Ocampo L. M. 2021. A Diagnostic Guide for Phytophthora capsici Infecting Vegetable Crops. Plant Health Progress 22: 404-414. DOI: 10.1094/PHP-02-21-0027-FI
  • Rahman A., Standish J.R., D’Arcangelo K. N., and Quesada-Ocampo L. M. 2021. Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology 111: 312-320. DOI: 10.1094/PHYTO-06-20-0231-R
  • Rennberger, G., and Keinath, A. P. (.2021. Diseases of cucurbits: gummy stem blight. In: Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Salcedo A., Parada-Rojas C. H., Guerrero R., Stahr M., D’Arcangelo K.N., McGregor C., Kousik C., Wehner T., and Quesada-Ocampo L. M. 2021. The NLR family of disease resistance genes in cultivated watermelon and other cucurbits: opportunities and challenges. Chapter 3. In: The Watermelon Genome. Editors: Dutta S. K. and Reddy U. Springer.
  • Salcedo A., Purayannur S., Standish J. R., Miles T., Thiessen L., and Quesada-Ocampo L. M. 2021. Fantastic downy mildew pathogens and how to find them: Advances in detection and diagnostics. Plants 10: 435. DOI: 10.3390/plants10030435
  • Schultheis, J.R. 2017. Cultural production (p. 11-16). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn.  DOI: 10.1094/9780890545744.001
  • Stajich, JE, Vu, AL, Judelson, H, Vogel, GM, Gore, MA, Carlson, MO, Devitt, N, Jacobi, J, Mudge, J, Lamour, K, and Smart, CD. 2021. High quality reference genome for the oomycete vegetable pathogen Phytophthora capsici strain LT1534. Microbiology Resource Announcements Volume 10 Issue 21. DOI: 10.1128/MRA.00295-21
  • Toporek, S. M., and Keinath, A. P. 2021. Diseases of cucurbits: Pythium damping-off and root and stem rot. In: Handbook of Vegetable and Herb Diseases. Editors: Elmer W., McGrath M. T., and McGovern R. Springer.
  • Vogel, GM, Gore, MA, and Smart CD 2021. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology, DOI: 10.1094/PHYTO-04-20-0112-FI
  • Zhang C, Mansfeld BN, Lin YC, Grumet R. 2021. Quantitative high-throughput, real-time bioassay for plant pathogen growth in vivo. Frontiers Plant Sci 12:637190. DOI: 10.3389/fpls.2021.637190

  • Hausbeck, M.K., C.S. Krasnow, and S.D. Linderman. 2020. Methyl bromide alternatives for Phytophthora capsici on Michigan’s cucurbit crops. Acta Horticulturae 1270: 307-314. DOI: 10.17660/ActaHortic.2020.1270.37
  • Salcedo A., M. K. Hausbeck, S. Pigg, and L. M. Quesada-Ocampo. 2020. Diagnostic guide for cucurbit downy mildew. Plant Health Progress 21: 166-172. DOI: 10.1094/PHP-12-19-0095-DG
  • Trandel, M.A. 2020. Cell wall polysaccharides in grafted and non-grafted ‘Liberty’ watermelon with hollow heart. North Carolina State University. PhD Dissertation, 199 pp.
  • Vogel, G.M.,M.A. Gore, and C.D. Smart. 2020. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology. DOI: 10.1101/2020.04.01.020826
  • Wallace E., K. N. D’Arcangelo, and L. M. Quesada-Ocampo. 2020. Population analyses reveal two host-adapted clades of Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew, on commercial and wild cucurbits. Phytopathology 110: 15-78-1587. DOI: 10.1094/PHYTO-01-20-0009-R

  • Bertucci, M.B., D.H. Suchoff, K.M. Jennings, D.W. Monks, C.C. Gunter, J.R. Schultheis, and F.J. Louws. 2018. Comparison of root system morphology of cucurbit rootstocks for use in watermelon grafting. HortTechnology. 28(5):629-636. DOI: 10.21273/HORTTECH04098-18
  • Crandall, S.G., A. Rahman, L.M. Quesada-Ocampo, F.N. Martin, G.J. Bilodeau, and T.D. Miles. 2018. Advances in diagnostics of downy mildews: lessons learned from other oomycetes and future challenges. Plant Disease 102: 265-275. DOI: 10.1094/PDIS-09-17-1455-FE.
  • Keinath, A.P., K.S. Ling, S. Adkins, D.K. Hasegawa, A.M. Simmons, S. Hoak, H.C. Mellinger, and C.S. Kousik. 2018. First report of Cucurbit leaf crumple virus infecting three cucurbit crops in South Carolina. Plant Health Progress 19:322-323. DOI: 10.1094/PHP-07-18-0039-BR
  • Keinath, A.P., G. Rennberger, and C.S. Kousik. 2018. First report of resistance to boscalid in Podosphaera xanthii, cucurbit powdery mildew, in South Carolina. Plant Health Progress 19:220-221. DOI: 10.1094/PHP-03-18-0009-BR
  • Lebeda, A., E. Křístková, B. Sedláková, and J.D. McCreight. 2018. Initiative for uniform cucurbit powdery mildew race determination and denomination: status of race differentials. Cucurbit Genet. Coop. Rept. 41:17–19.
  • Lebeda, A., E. Křístková, B. Sedláková, J.D. McCreight, and E. Kosman. 2018. Virulence variation of cucurbit powdery mildews in the Czech Republic – population approach. European J. Plant Pathol. DOI: 10.1007/s10658-018-1476-x
  • Parada-Rojas, C.H. and L.M. Quesada-Ocampo. 2018. Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies. Scientific Reports 8: 5194. DOI: 10.1038/s41598-018-23438-8.
  • Rennberger, G., C.S. Kousik, and A.P. Keinath. 2018. First report of powdery mildew on Cucumis zambianus, Cucurbita digitata and Melothria scabra caused by Podosphaera xanthii. Plant Disease 102:246. DOI: 10.1094/PDIS-06-17-0916-PDN
  • Schultheis, J.R., and K.D. Starke. 2018. Standard size watermelon cultivar yield and quality results, North Carolina, 2017. HortScience 53(9):S502.
  • Starke, K.D., and J.R. Schultheis. 2018. Mini watermelon cultivar yield and quality results, North Carolina, 2017. HortScience 53 (9):S502.
  • Trandel, M., P. Perkins-Veazie, and J.R. Schultheis. 2018. Tissue firmness and hollow heart development in 2012, 2013, and 2014 triploid watermelon variety trials.
  • Trandel, M.A., P. Perkins-Veazie, J.R. Schultheis, C. Gunter, and E. Johannes. 2018. Hollow heart formation in grafted and nongrafted watermelons. HortScience 53(9):S503 (abstr.). Cucurbitaceae 2018.
  • Wechter, P., R. Hassell, and A. Levi. 2018. Plant variety protection (PVP) for ‘Carolina Strongback’ a watermelon rootstock with resistance to Fusarium wilt and root-knot nematodes. USDA ARS Research Project #432455

  • Adkins, S.T., W. Turechek, P.D. Roberts, S.E. Webb, C.A. Baker, and C.S. Kousik. 2017. Squash vein yellowing virus. (p. 149-151). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: https:/10.1094/9780890545744.002
  • Adkins, S.T., and C.S. Kousik. 2017. Cucumber vein yellowing virus (p. 143-144). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.002
  • Carlson, M.O., E. Gazave, M.A. Gore, and C.D. Smart. 2017. Temporal genetic dynamics of an experimental, biparental field population of Phytophthora capsici. Frontiers in Genetics 8:26. DOI: 10.3389/fgene.2017.00026
  • Hausbeck, M.K. and L.M. Quesada-Ocampo. 2017. Phytophthora crown and root rot (p. 43-45). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.002
  • Parada-Rojas, C. H., and L. M. Quesada-Ocampo. 2017. Population structure of the oomycete soilborne pathogen Phytophthora capsici in North Carolina. Phytopathology 107 (12): 21.
  • Quesada-Ocampo, L.M., T.C. Wehner, and J.E. Staub. 2017. Moisture stress (p. 187-188). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.004
  • Quesada-Ocampo, L.M., T.C. Wehner, and J.E. Staub. 2017. Temperature stress (p. 188-189). In: A.P. Keinath, W.M. Wintermantel and T.A. Zitter (eds.). Compendium of cucurbit diseases and pests, second edition. APS Press, St. Paul, Minn. DOI: 10.1094/9780890545744.004
  • Rahman, A., Wallace E., Crouch J., Martin F., and L. M.Quesada-Ocampo. 2017. Unravelling historical shifts in Pseudoperonospora cubensis populations in the U.S. that resulted in the 2004 cucurbit downy mildew epidemic. Phytopathology.
  • Rahman, A., T. D. Miles, F. N. Martin, and L. M. Quesada-Ocampo. 2017. Molecular approaches for development of biosurveillance tools for the cucurbit downy mildew pathogen Pseudoperonospora cubensis. Canadian Journal of Plant Pathology 39: 282-296. DOI: 10.1080/07060661.2017.1357661
  • Tabima, J.F., S.E. Everhart, M.M. Larsen, A.J. Weisberg, Z.N. Kamvar, M.A. Tancos, C.D. Smart, J.H. Chang, and N.J. Grünwald. 2017. Microbe-ID: An open source toolbox for microbial genotyping and species identification. PeerJ 4:e2279; DOI: 10.7717/peerj.2279
  • Thomas, A., I. Carbone, K. Choe, L. M. Quesada-Ocampo, and P. Ojiambo. 2017. Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of Pseudoperonospora cubensis. Ecology and Evolution 7: 6231-6246. DOI: 10.1002/ece3.3194
  • Wallace, E. and L. M. Quesada-Ocampo. 2017. Analysis of microsatellites from the transcriptome of downy mildew pathogens and their application for characterization of Pseudoperonospora populations. PeerJ 5: e3266. DOI: 10.7717/peerj.3266 
  • Webster, C.G., W.W. Turechek, W. Li, C.S. Kousik, and S. Adkins. 2017. Development and evaluation of ELISA and qRT-PCR for identification of Squash vein yellowing virus in cucurbits. Plant Disease 101:178-185. DOI: 10.1094/PDIS-06-16-0872-RE

  • Lebeda, A., E. Křístková, B. Sedláková, J.D. McCreight, and M.D. Coffey. 2016. Cucurbit powdery mildews: methodology for objective determination and denomination of races. European Journal of Plant Pathology 144:399–410. DOI: 10.1007/s10658-015-0776-7
  • Naegele, R. P., L.M. Quesada-Ocampo, J.D. Kurjan, C. Saude, and M.K. Hausbeck. 2016. Regional and temporal population structure of Pseudoperonospora cubensis in Michigan and Ontario. Phytopathology 106: 372-379. [PDF] DOI: 10.1094/PHYTO-02-15-0043-R
  • Wallace, E., Y.J. Choi., M. Thines, and L.M. Quesada-Ocampo. 2016. First report of Plasmopara aff. australis on Luffa cylindrica in the United States. Plant Disease 100: 537. DOI: 10.1094/PDIS-06-15-0684-PDN.
  • Withers, S., E. Gongora-Castillo, D. Gent, A. Thomas, P. Ojiambo, and L.M. Quesada-Ocampo. 2016. Using next-generation sequencing to develop molecular diagnostics for  Pseudoperonospora cubensis, the cucurbit downy mildew pathogen. Phytopathology 106: 1105-1116. DOI: 10.1094/PHYTO-10-15-0260-FI